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Numerical Simulation of Solute Dispersion in Laminar 
lube Flow 

K. P. MAYOCK, J. M. TARBELL, and J. L. DUDA 

DEPARTMENT OF CHEMICAL ENGINEERING 
PENNSYLVANIA STATE UNIVERSITY 
UNIVERSITY PARK, PENNSYLVANIA 16802 

Abstract 

The dispersion of a solute slug in laminar tube flow has been simulated by 
a numerical method (the Flux Corrected Transport Algorithm) for a set of tube 
lengths embracing the pure convection through Taylor dispersion regimes. 
The results reveal unexpected double peak breakthrough curves for tubes of 
intermediate length. Experimental evidence of double peaks which qualitatively 
confirms the simulations is discussed. 

INTRODUCTION 

Dispersion of a solute slug by a fluid being convected in laminar flow 
through a straight tube of circular cross section was first analyzed theoret- 
ically by Taylor ( I )  who solved for the area averaged concentration in 
the asymptotic case of long tubes at high Pklet number. Aris (2) also 
solved the long tube problem, but managed to relax the high PCclet number 
restriction. Gill and Sankarasubramanian (3) developed a more general 
dispersion theory which, in its usual truncated form, also applies to long 
tubes, although the tubes need not be so long as those of Taylor and Aris. 
The truncated dispersion theory of Gill and Sankarasubramanian certainly 
does not describe dispersion in short tubes [see Jayaraj and Subramaniar 
(4) and Fife and Nicholes (5) for discussions of this point]. The break 
through curves predicted by these long tube solutions are all characterize1 
by smooth single peaks. 

For short tubes the pure convection solution [see Taylor (Z)] describe 
limiting behavior, and Lighthill’s (6) solution describes asymptoti 
behavior near the pure convection limit. The short-tube breakthroug 
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curves are characterized by sharp single peaks with long tails. Lighthill 
indicates that his solution applies when t*( = t / (R2/D))  < 0.1, while 
Taylor’s solution applies when t* =- 0.5. 

In this paper we develop numerical solutions of the slug dispersion 
problem and monitor the breakthrough curves from the pure convection 
to the Taylor dispersion limits. In the process we uncover some rather 
unexpected double peak breakthrough curves for tubes of intermediate 
length. It should be noted that previous numerical solutions of the disper- 
sion problem (7,8) have not revealed the double peak behavior. 

THE DISPERSION MODEL 

The dispersion of a solute by a fluid in fully developed, steady, laminar 
flow through a straight tube of circular cross section is modeled by the 
convective-diffusion equation 

in which the molecular diffusion coefficient (D) is assumed constant and 
axial molecular diffusion is presumed negligible [cf. Taylor (41. The 
conditions to be imposed on the solution of Eq. (1) are 

ac ac 
ar ar -(t, Z, 0) = - ( I ,  Z,  R )  = 0 

c(0, Z ,  r )  = co (0 < Z < Z,) 
(Z  < 0, z > Z,) 

(2) 
= 0 

which describe a tube of fluid initially containing a uniform, axisymmetric 
slug of solute of length Z, and concentration co emanating from an 
injection point ( Z  = 0). 

Introduction of the scaled variables 

c* = c/co, r* = r/R,  Z* = Z/(R2uo/D),  t* = t/(R’/D) 

into Eq. (1) and Conditions (2) leads to the dimensionless dispersion 
model 

ac* ac* - (t*, z*, 0) = - (t*, z * ,  1) = 0 ar * dr * 
c*(o, z*, r * )  = 1 

= 0 
(0 < Z* < Zf) 
(Z* < 0, z* > Zf) 

(4) 
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The area averaged mean concentration 

c,*(t*, Z * )  = 2 s1 c*r* dr* 
0 

( 5 )  

which is the concentration usually associated with dispersion theories, 
will be employed in presenting solutions of the dispersion model. 

NUMERICAL METHODS 

Accurate numerical solutions of the slug dispersion problem for short 
times are difficult to obtain because the sharp axial concentration gradient 
induces numerical dispersion [artifical viscosity (9)] which masks the real 
dispersion. This phenomenon is readily observed when a concentration 
slug in a plug flow without molecular diffusion is simulated by numerical 
methods. The discontinuities in concentration at the front and rear of the 
slug are not preserved as rounded shoulders, and spreading tails quickly 
appear. To deal with this numerical dispersion artifact, Boris and Book 
(10-12) developed the Flux-Corrected Transport Algorithm (FCTA) which 
we have applied to the dispersion problem in this work. The advantages of 
the FCTA over other well-known numerical methods (e.g., Lax-Wendroff 
and Crank-Nicholson) for convection-dominated transport problems 
have been demonstrated by Boris and Book (10). Complete details of the 
FCTA application to the dispersion problem of the preceding section 
are given elsewhere (13). 

Briefly, the FCTA proceeds in two stages. In Stage I the spatial deriva- 
tives in Eq. (3) are approximated by second-order central differences (14), 
the time derivative is approximated by a first-order forward difference, 
and a standard explicit estimate of the concentration field at the next time 
step is obtained. This estimate is “corrected” by addition of an artificial 
axial diffusion term. In Stage I1 an “antidiffusion” correction, which 
depends in a complex way on the axial concentration gradient obtained 
from Stage I, is imposed. This two-stage sequence is repeated at each time 
step for calculation of the concentration at all interior grid points. 

For our dispersion problem, stable boundary values were obtained by 
simple second-order backward difference approximations to the zero flux 
conditions at the tube center and wall. A tube of finite length, and thus 
computations of reasonable time, were realized by approximating the axial 
partial derivative in Eq. (3) with a first-order backward difference at the 
last axial grid location. A second-order central difference was employed 
for this derivative at all other axial grid locations. Finally, a fourth-order 
Simpson’s rule approximation served to calculate the area averaged mean 
concentration (Eq. 5). 
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The accuracy of the FCTA for simulation of slug dispersion at short 
times (convection predominating) may be inferred from Boris and Book 
(20). For long times, Taylor’s analytical solution (2) is available for 
comparison with the FCTA solution. This comparison is shown (Fig. 9), 
and quite satisfactory agreement is apparent. For intermediate times 
we expect the FCTA to provide an accurate picture of the dispersion 
process as it evolves toward the Taylor dispersion limit. 

N U MERICAL RESULTS 

All of the results presented in this section were obtained with the 
following finite difference mesh parameters: At* = .0001, AZ* = .00104, 
Ar* = .0333. The initial slug length was fixed at Z,* = 8(AZ*) in each 
case. It was observed that variation of the initial slug length did not affect 
the qualitative features of the dispersion process which are discussed below. 

Elution curves based on the area averaged mean concentration are 
displayed in Figs. 1, 3, 5 ,  7, and 9 for five axial locations ranging from 
convection dominated dispersion (Z* = 0.0203) to Taylor dispersion 
(Z* = 0.813). A companion figure is presented for each of the first four 
axial locations (Figs. 2, 4, 6 ,  and 8) which contains elution curves based 
on point concentrations at three radial positions (r* = 0.0, 0.7, 1.0). 

Figure 1 shows the mean elution curve at an early time (short axial 
distance, Z* = 0.0203) and compares it to Taylor’s pure convection 
analytical solution (1). The elution time for the sharp mean concentration 
peak (t* = t i )  nearly coincides with the elution time for the point concen- 
tration at the center of the tube (cf. Fig. 2). Clearly the predominance of 
convection in the central region of the tube is responsible for the sharp 
peak in the mean elution curve. Figure 2 displays point elution peaks of 
more gradual rise and greater dispersion at lower velocity radial positions. 
These peaks indicate a stronger diffusional influence in the tube wall 
region which also reveals itself as a gentle shoulder on the tail side of the 
mean elution curve (Fig. 1). 

At somewhat greater axial distance (Z* = 0.1, Fig. 3), the mean elution 
curve is distinguished by a rather surprising double peak. The sharp first 
peak is again a manifestation of convection domination in the central 
region of the tube. The gentle second peak is the evolution of the diffusion 
shoulder which appeared in Fig. 1. The strong spatial segregation of 
convection and diffusion regimes which produces the double peak in the 
mean elution curve is clearly exposed in Fig. 4 which shows nearly identical 
broad elution curves at r* = 0.7 and 1.0 of character quite distinct from 
the sharp curve at r* = 0.0. 
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DIMENSIONLESS TIME, t * 
FIG. 1 .  Mean breakthrough curve at Z* = 0.0203. (-) Pure convection 

solution, (- -) numerical solution, t ,  = 0.018. 
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FIG. 2. Internal breakthrough curves at Z* = 0.0203. (-) r *  = 0.0, (- -) 

r* = 0.7, (- -) r* = 1.0, t1  = 0.013, tz  = 0.024, t3 = 0.05. 
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DIMENSIONLESS TIME, t* 

Mean breakthrough curve at Z* = 0.10. t ,  = 0.113, t2 = 0.210. 

0'4r------ 

5 

DIMENSIONLESS TIME, t * 
FIG. 4. Internal breakthrough curves at Z* = 0.10. (-) r* = 0.0, (- -) 

r* = 0.7, (- -) r* = 1.0, t l  = 0.105, t2 = 0.210, t 3  = 0.250. 
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Further down the tube (Z* = 0.124, Fig. 5) ,  the broad diffusion peak 
becomes the dominant feature of the mean elution curve with the last 
remnant of a convection regime appearing as a sharp shoulder on the rise 
of the curve. The elution curve at the center of the tube is still sharply 
peaked (Fig. 6 )  and not strongly influenced by diffusion. 

At Z* = 0.294 (Fig. 7) the mean elution curve is single peaked without 
shoulders and reasonably well approximated by Taylor’s analytical solu- 
tion (1). The point elution curves (Fig. 8) are nearly coincident and the 
influence of diffusion has now strongly affected the central region of the 
tube. By the time Z* = 0.813 (Fig. 9) is reached, fully developed Taylor 
dispersion is obtained and, although not shown, the point elution curves 
at all radial positions are indistinguishable. 

The asymptotic development of Taylor dispersion is displayed quantita- 
tively in Fig. 10 which is a parametric plot of the peak elution times 
[t,(r*)], normalized by the mean elution time in Taylor dispersion (t,), 
as a function of axial position. The point elution curves are coherent 
in the Taylor dispersion limit which is, for practical purposes, reached at 
Z* = 0.8. 

DISC U S S l O  N 

Car0 (15) measured breakthrough curves for the laminar dispersion of 
red dye in water flowing through curved and straight tubes. Double peaks 
were reported for both geometries. Although Car0 attributed the behavior 
to secondary flow effects in the curved tube, he offered no explanation for 
the double peaks obtained in the straight tube. 

More convincing experimental confirmation of our results has been 
reported by Liauh (16) who measured the dispersion of sodium poly- 
styrene sulfonate slugs (of various molecular weights and diffusivities) by 
aqueous Na,S04 solvent in laminar flow through a straight tube. In a 
sequence of experiments (employing an ultraviolet detector at  the end of 
a fixed length of tube) in which the molecular weight of the polymer solute 
was varied from 1 x lo6 to 4 x lo3, the observed breakthrough curves 
were transformed from single peak through double peak and back again 
to single peak. These qualitative changes are quite in accord with our 
numerical results (cf. Figs. 1, 3, 5,  7, and 9). Unfortunately, a more 
quantitative comparison between theory and experiment is not possible 
because the sodium polystyrene sulfonate diffusivities are difficult to 
measure and depend markedly on concentration (1 7). 

In conclusion, we feel that the detailed numerical work presented in this 
paper fills a theoretical void in the understanding of laminar dispersion. It 
bridges the gap between convective and Taylor dispersion and in the 
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FIG. 5. Mean breakthrough curve at Z* = 0.124. t l  = 0.124, tz  = 0.250. 

FIG. 6.  Internal breakthrough curves at Z* = 0.124. (-) Y *  = 0.0, (- -) 
r* = 0.7, (- -) Y *  = 1.0, rI = 0.130, r2 = 0.265, r 3  = 0.300. 
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DIMENSIONLESS TIME, t * 
FIG. 7 .  Mean breakthrough curve at Z* = 0.294. (-) Taylor’s analytic 

solution ( I ) ,  (- -) numerical solution, rI = 0.585. 

0.0 0.2 0.4 0.6 08 1.0 

DIMENSIONLESS TIME, t* 

FIG. 8. Internal breakthrough curves at Z* = 0.294. (-) r* = 0.0, (- -) 
r*  = 0.7, (- -) r* = 1.0, t l  = 0.500, t2  = 0.600, t3  = 0.630. 
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DIMENSIONLESS TIME, t* 

FIG. 9. Mean breakthrough curve at Z* = 0.813. (--) Taylor’s analytical 
solution ( I ) ,  (- -) numerical solution, t l  = 1.60. 
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FIG. 10. Normalized elution times for internal breakthrough curves. 
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process reveals the rather surprising double peak phenomena which we 
have discussed at length. 

NOTE ON RECENT WORK 

Since this paper was accepted for publication, a paper by Golay and 
Atwood (18) has come to our attention. These authors have observed 
double peaking phenomena in pulse dispersion experiments in laminar 
tube flow employing sodium benzoate in water. Our Figs. 1 ,  3, and 5 are 
strikingly similar to the experimental breakthrough curves shown in their 
Fig. 10. Golay and Atwood have also performed numerical calculations 
by methods quite distinct from ours, and have predicted double peak 
breakthrough curves. 

SYMBOLS 

concentration 
initial slug concentration 
dimensionless concentration 
dimensionless area averaged mean concentration 
molecular diffusion coefficient 
radial coordinate 
dimensionless radial coordinate 
tube radius 
time 
dimensionless time 
elution time in Taylor dispersion 
peak elution time for internal breakthrough curves 
centerline velocity 
axial coordinate 
dimensionless axial coordinate 
slug length 
dimensionless slug length 
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