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Numerical Simulation of Solute Dispersion in Laminar
Tube Flow

K. P. MAYOCK, J. M. TARBELL, and J. L. DUDA

DEPARTMENT OF CHEMICAL ENGINEERING
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802

Abstract

The dispersion of a solute slug in laminar tube flow has been simulated by
a numerical method (the Flux Corrected Transport Algorithm) for a set of tube
lengths embracing the pure convection through Taylor dispersion regimes.
The results reveal unexpected double peak breakthrough curves for tubes of
intermediate length. Experimental evidence of double peaks which qualitatively
confirms the simulations is discussed.

INTRODUCTION

Dispersion of a solute slug by a fluid being convected in laminar fiow
through a straight tube of circular cross section was first analyzed theoret-
ically by Taylor (1) who solved for the area averaged concentration in
the asymptotic case of long tubes at high Péclet number. Aris (2) also
solved the long tube problem, but managed to relax the high Péclet number
restriction. Gill and Sankarasubramanian (3) developed a more general
dispersion theory which, in its usual truncated form, also applies to long
tubes, although the tubes need not be so long as those of Taylor and Aris.
The truncated dispersion theory of Gill and Sankarasubramanian certainly
does not describe dispersion in short tubes [see Jayaraj and Subramaniar
(4) and Fife and Nicholes (5) for discussions of this point]. The break
through curves predicted by these long tube solutions are all characterizes
by smooth single peaks.

For short tubes the pure convection solution [see Taylor (7)] describe
limiting behavior, and Lighthill’s (6) solution describes asymptoti
behavior near the pure convection limit, The short-tube breakthroug
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curves are characterized by sharp single peaks with long tails. Lighthill
indicates that his solution applies when r*(= t#/(R?*/D)) < 0.1, while
Taylor’s solution applies when ¢* > 0.5.

In this paper we develop numerical solutions of the slug dispersion
problem and monitor the breakthrough curves from the pure convection
to the Taylor dispersion limits. In the process we uncover some rather
unexpected double peak breakthrough curves for tubes of intermediate
length. It should be noted that previous numerical solutions of the disper-
sion problem (7, 8) have not revealed the double peak behavior.

THE DISPERSION MODEL

The dispersion of a solute by a fluid in fully developed, steady, laminar
flow through a straight tube of circular cross section is modeled by the
convective-diffusion equation

oc r2oc o 1dc
a—t*“o[l "P]52=D[F+?57] Q)
in which the molecular diffusion coefficient (D) is assumed constant and

axial molecular diffusion is presumed negligible [cf. Taylor (/})]. The
conditions to be imposed on the solution of Eq. (1) are

de oc
5% 2.0 = 764 R =0

C(O’ Z: r) = Co (0 S z < ZS) (2)
=0 (Z<0,Z>Zy

which describe a tube of fluid initially containing a uniform, axisymmetric
slug of solute of length Zg and concentration ¢, emanating from an
injection point (Z = 0).

Introduction of the scaled variables

¢* =clc,, r*=r/R, Z* = Z/(R*uy/D), t* = t/(R*D)
into Eq. (1) and Conditions (2) leads to the dimensionless dispersion
model

dc* w2 0% 0%c* 1 ac*
5F+(1_r )62*_6r*2+r*6r* @)

* a *
2—:—*0*, Z%,0) = 55 (1%, 2% 1) = 0

¢*(0,Z*,r*) =1 (0<Z*<ZH )
=0 (Z*<0,2*>2Z3)
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The area averaged mean concentration
1
cXt*, Z%) = Zj‘ c*r¥ dr* &)
0

which is the concentration usually associated with dispersion theories,
will be employed in presenting solutions of the dispersion model.

NUMERICAL METHODS

Accurate numerical solutions of the slug dispersion problem for short
times are difficult to obtain because the sharp axial concentration gradient
induces numerical dispersion [artifical viscosity (9)] which masks the real
dispersion. This phenomenon is readily observed when a concentration
slug in a plug flow without molecular diffusion is simulated by numerical
methods. The discontinuities in concentration at the front and rear of the
slug are not preserved as rounded shoulders, and spreading tails quickly
appear. To deal with this numerical dispersion artifact, Boris and Book
(10-12) developed the Flux-Corrected Transport Algorithm (FCTA) which
we have applied to the dispersion problem in this work. The advantages of
the FCTA over other well-known numerical methods (e.g., Lax-Wendroff
and Crank-Nicholson) for convection-dominated transport problems
have been demonstrated by Boris and Book (/0). Complete details of the
FCTA application to the dispersion problem of the preceding section
are given elsewhere (13).

Briefly, the FCTA proceeds in two stages. In Stage I the spatial deriva-
tives in Eq. (3) are approximated by second-order central differences (14),
the time derivative is approximated by a first-order forward difference,
and a standard explicit estimate of the concentration field at the next time
step is obtained. This estimate is “corrected” by addition of an artificial
axial diffusion term. In Stage II an “‘antidiffusion™ correction, which
depends in a complex way on the axial concentration gradient obtained
from Stage I, is imposed. This two-stage sequence is repeated at each time
step for calculation of the concentration at all interior grid points.

For our dispersion problem, stable boundary values were obtained by
simple second-order backward difference approximations to the zero flux
conditions at the tube center and wall. A tube of finite length, and thus
computations of reasonable time, were realized by approximating the axial
partial derivative in Eq. (3) with a first-order backward difference at the
last axial grid location. A second-order central difference was employed
for this derivative at all other axial grid locations. Finally, a fourth-order
Simpson’s rule approximation served to calculate the area averaged mean
concentration (Eq. 5).
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The accuracy of the FCTA for simulation of slug dispersion at short
times (convection predominating) may be inferred from Boris and Book
(10). For long times, Taylor’s analytical solution (/) is available for
comparison with the FCTA solution. This comparison is shown (Fig. 9),
and quite satisfactory agreement is apparent. For intermediate times
we expect the FCTA to provide an accurate picture of the dispersion
process as it evolves toward the Taylor dispersion limit.

NUMERICAL RESULTS

All of the results presented in this section were obtained with the
following finite difference mesh parameters: At* = .0001, AZ* = .00104,
Ar* = .0333. The initial slug length was fixed at Z¥ = 8(AZ*) in each
case. It was observed that variation of the initial slug length did not affect
the qualitative features of the dispersion process which are discussed below.

Elution curves based on the area averaged mean concentration are
displayed in Figs. 1, 3, 5, 7, and 9 for five axial locations ranging from
convection dominated dispersion (Z* = 0.0203) to Taylor dispersion
(Z* = 0.813). A companion figure is presented for each of the first four
axial locations (Figs. 2, 4, 6, and 8) which contains elution curves based
on point concentrations at three radial positions (#* = 0.0, 0.7, 1.0).

Figure 1 shows the mean elution curve at an early time (short axial
distance, Z* = 0.0203) and compares it to Taylor’s pure convection
analytical solution (7). The elution time for the sharp mean concentration
peak (¢* = t,) nearly coincides with the elution time for the point concen-
tration at the center of the tube (cf. Fig. 2). Clearly the predominance of
convection in the central region of the tube is responsible for the sharp
peak in the mean elution curve. Figure 2 displays point elution peaks of
more gradual rise and greater dispersion at lower velocity radial positions.
These peaks indicate a stronger diffusional influence in the tube wall
region which also reveals itself as a gentle shoulder on the tail side of the
mean elution curve (Fig. 1).

At somewhat greater axial distance (Z* = 0.1, Fig. 3), the mean elution
curve is distinguished by a rather surprising double peak. The sharp first
peak is again a manifestation of convection domination in the central
region of the tube. The gentle second peak is the evolution of the diffusion
shoulder which appeared in Fig. 1. The strong spatial segregation of
convection and diffusion regimes which produces the double peak in the
mean elution curve is clearly exposed in Fig. 4 which shows nearly identical
broad elution curves at r* = 0.7 and 1.0 of character quite distinct from
the sharp curve at r* = 0.0.
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FiG. 1. Mean breakthrough curve at Z* = 0.0203. (——) Pure convection
solution, (~ -) numerical solution, ¢; = 0.018.
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FIG. 2. Internal breakthrough curves at Z* = 0.0203. (—) r* = 0.0, (--)
r*=0.7,(--)r*=1.0,¢ = 0.013, #, = 0.024, t; = 0.05.
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Further down the tube (Z* = 0.124, Fig. 5), the broad diffusion peak
becomes the dominant feature of the mean elution curve with the last
remnant of a convection regime appearing as a sharp shoulder on the rise
of the curve. The elution curve at the center of the tube is still sharply
peaked (Fig. 6) and not strongly influenced by diffusion.

At Z* = (0.294 (Fig. 7) the mean elution curve is single peaked without
shoulders and reasonably well approximated by Taylor’s analytical solu-
tion (/). The point elution curves (Fig. 8) are nearly coincident and the
influence of diffusion has now strongly affected the central region of the
tube. By the time Z* = 0.813 (Fig. 9) is reached, fully developed Taylor
dispersion is obtained and, although not shown, the point elution curves
at all radial positions are indistinguishable.

The asymptotic development of Taylor dispersion is displayed quantita-
tively in Fig. 10 which is a parametric plot of the peak elution times
[1,(r®)], normalized by the mean elution time in Taylor dispersion (z,),
as a function of axial position. The point elution curves are coherent
in the Taylor dispersion limit which is, for practical purposes, reached at
zZ* = 0.8.

DISCUSSION

Caro (15) measured breakthrough curves for the laminar dispersion of
red dye in water flowing through curved and straight tubes. Double peaks
were reported for both geometries. Although Caro attributed the behavior
to secondary flow effects in the curved tube, he offered no explanation for
the double peaks obtained in the straight tube.

More convincing experimental confirmation of our results has been
reported by Liauh (/6) who measured the dispersion of sodium poly-
styrene sulfonate slugs (of various molecular weights and diffusivities) by
aqueous Na,SO, solvent in laminar flow through a straight tube. In a
sequence of experiments (employing an ultraviolet detector at the end of
a fixed length of tube) in which the molecular weight of the polymer solute
was varied from 1 x 10° to 4 x 103, the observed breakthrough curves
were transformed from single peak through double peak and back again
to single peak. These qualitative changes are quite in accord with our
numerical results (cf. Figs. 1, 3, 5, 7, and 9). Unfortunately, a more
quantitative comparison between theory and experiment is not possible
because the sodium polystyrene sulfonate diffusivities are difficult to
measure and depend markedly on concentration (17).

In conclusion, we feel that the detailed numerical work presented in this
paper fills a theoretical void in the understanding of laminar dispersion. It
bridges the gap between convective and Taylor dispersion and in the
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FIG. 5. Mean breakthrough curve at Z* = 0.124. ¢, = 0.124, #, = 0.250.
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process reveals the rather surprising double peak phenomena which we
have discussed at length.

NOTE ON RECENT WORK

Since this paper was accepted for publication, a paper by Golay and
Atwood (18) has come to our attention. These authors have observed
double peaking phenomena in pulse dispersion experiments in laminar
tube flow employing sodium benzoate in water. Our Figs. 1, 3, and 5 are
strikingly similar to the experimental breakthrough curves shown in their
Fig. 10. Golay and Atwood have also performed numerical calculations
by methods quite distinct from ours, and have predicted double peak
breakthrough curves.

SYMBOLS

c concentration
Co initial slug concentration
c* dimensionless concentration
ck dimensionless area averaged mean concentration
D molecular diffusion coefficient
r radial coordinate
r* dimensionless radial coordinate
R tube radius
t time
t* dimensionless time
b elution time in Taylor dispersion
t, peak elution time for internal breakthrough curves
Uo centerline velocity
Z axial coordinate
z* dimensionless axial coordinate
Zs slug length
zZ¥ dimensionless slug length
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